Prise en charge du patient en fibrillation atriale et syndrome coronarien aigu

> Nicolas MENEVEAU (CHU Besançon) IMCVO Décembre 2021

Disclosures

Speaker: Nicolas Meneveau

✓ I have the following potential conflicts of interest to declare:

Consultant:

Abbott, Alliance BMS/Pfizer, Bayer, Bayer Healthcare, Edwards Lifesciences, Sanofi Regeneron, Terumo

Honoraria:

AstraZeneca

Clinical challenge in patients with atrial fibrillation undergoing PCI

AF

+

PCI

Triple

Therapy

Aspirin Clopidogrel Prasugrel Ticagrelor

 VKA

 Dabigatran

 Rivaroxaban

 Apixaban

 Edoxaban

Stent Thrombosis DAPT > OAC

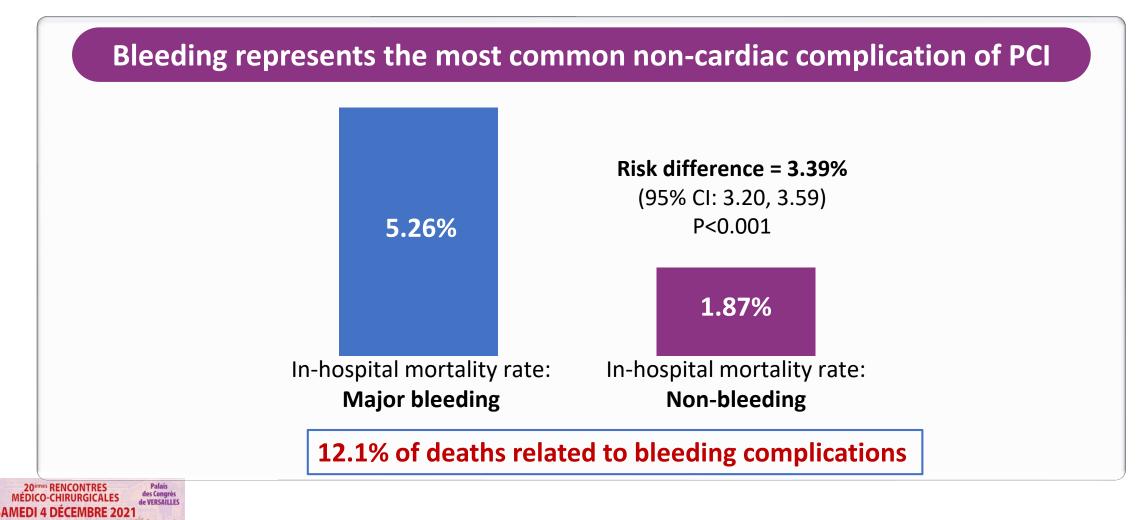
PCI

TIA/Stroke OAC > DAPT

AF)

Schömig et al. NEJM 1996. Connolly et al Lancet 2006. Capodanno D, Angiolillo DJ. JACC: Cardiovascular Interventions 2017.

Bleeding and triple therapy after ACS/PCI in patients with atrial fibrillation



Lamberts, et al. Circulation 2012;126:1185–93.

For patients undergoing PCI, major bleeding is associated with increased in-hospital mortality

Data from 3,386,688 procedures in the CathPCI Registry in the US 2004-2011

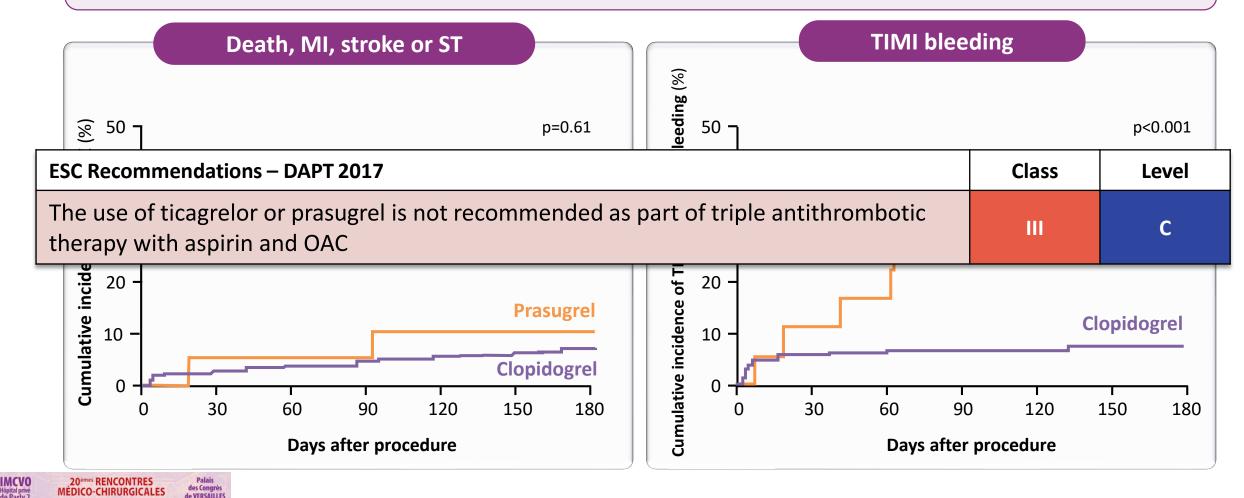
Q, confidence interval; PCI, percutaneous coronary intervention.

Chatriwalla AK, et al. JAMA 2013;309:1022–9.

Combinations of antiplatelet and antithrombotic agents in patients with AF and stent placement

2.8 million different combinations!

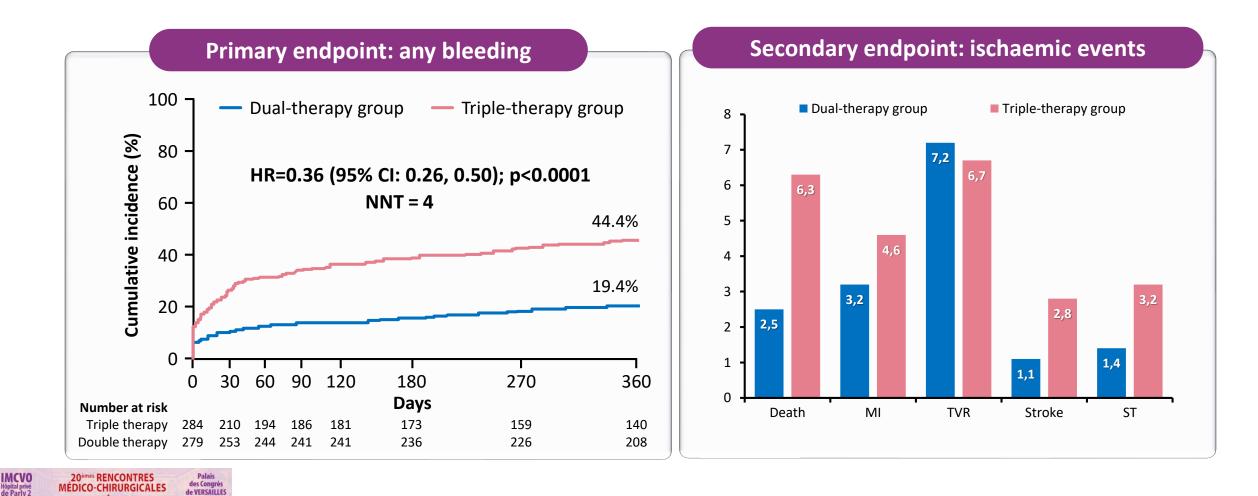
ASA dose	None	Low	High				2	1+8 = 9
ASA duration, months	1	3	6	12			4	ASA
Thienopyridine	None	Clop	Ticlo	Pras	Ticag		4	1+16 = 17
Thienopyridine duration, months	1	3	6	12			4	Thieno
AC	None	Warf	Dabi	Riva	Apix	Edox	5	1+10 = 11
AC INR/dose		Low	High				2	ACs


Permutations of single, dual or triple therapy as **early initial therapy (0, 1, 3, 6 months)** following ACS: **9 x 17 x 11 = 1,683** Permutations of single or dual therapy **late after early therapy (0, 1, 3, 6, 12 months)** following ACS: **1,683**

Total permutations throughout one year: 2.8 million

Triple therapy with aspirin, prasugrel and VKA after DES implantation

377 consecutive pts (2009–2011) with an indication for OAC treated with a 6-month regimen of aspirin and either prasugrel (N=21) or clopidogrel (N=356)

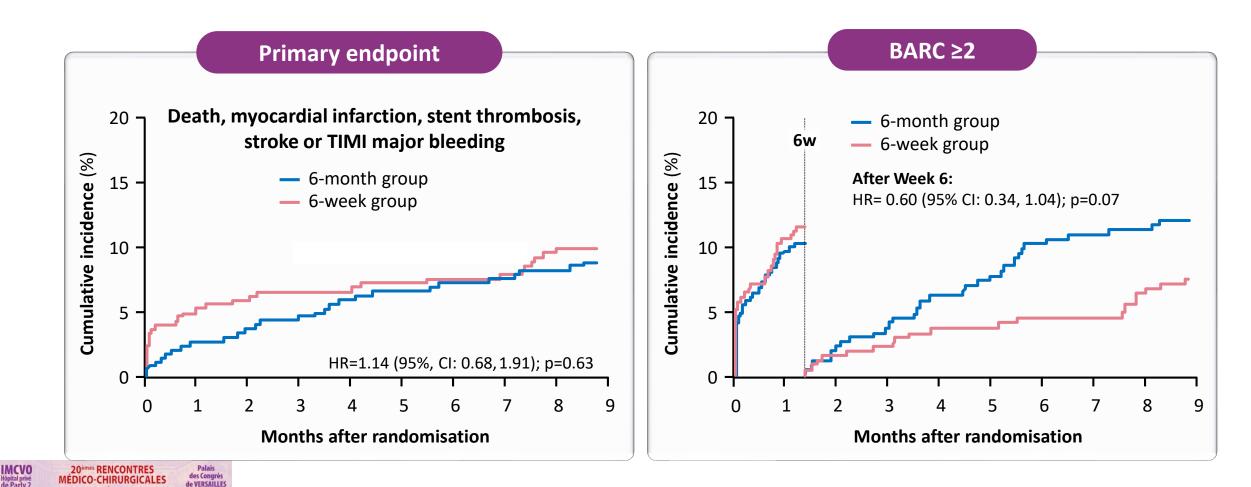


Hôpital prive de Parly 2

MEDICO-CHIRURGICALES

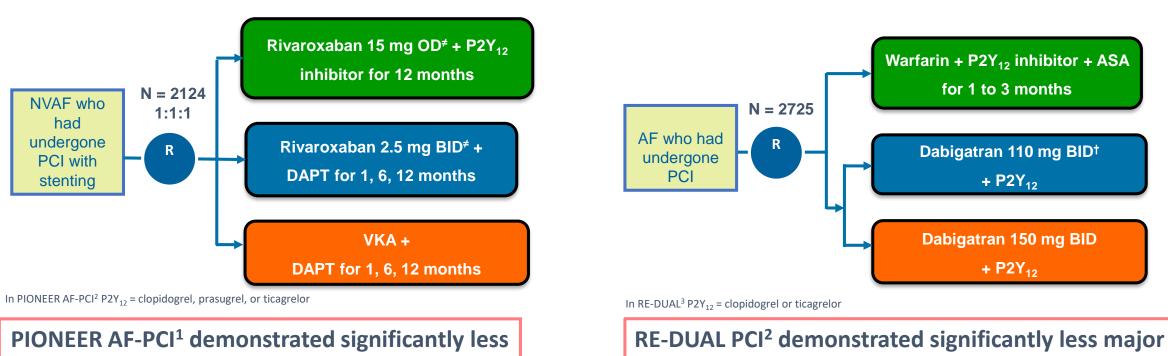
WOEST : Trial results

573 patients on OAC undergoing stent (DES/BMS) implantation received oral anticoagulants^{*} + clopidogrel 75 mg qd^{**} and randomised 1:1 to also receive aspirin 80 mg OR aspirin placebo qd



SAMEDI 4 DECE

00


ISAR-TRIPLE : Trial results

Duration of triple therapy in 600 Pts requiring oral anticoagulation after DES implantation 6-week vs 6-month triple therapy (1:1 randomisation)

Fiedler KA, et al. J Am Coll Cardiol 2015;65:1619–29.

Safety and efficacy of dual vs. triple antithrombotic therapy in patients with AF following PCI PIONEER AF-PCI¹ RE-DUAL PCI²

bleeding in either rivaroxaban containing arm compared to VKA plus DAPT.

In patients where DAPT (ASA + $P2Y_{12}$) was received for < 12 months SAPT (ASA) was given instead

Palais des Congrès de VERSAILLES

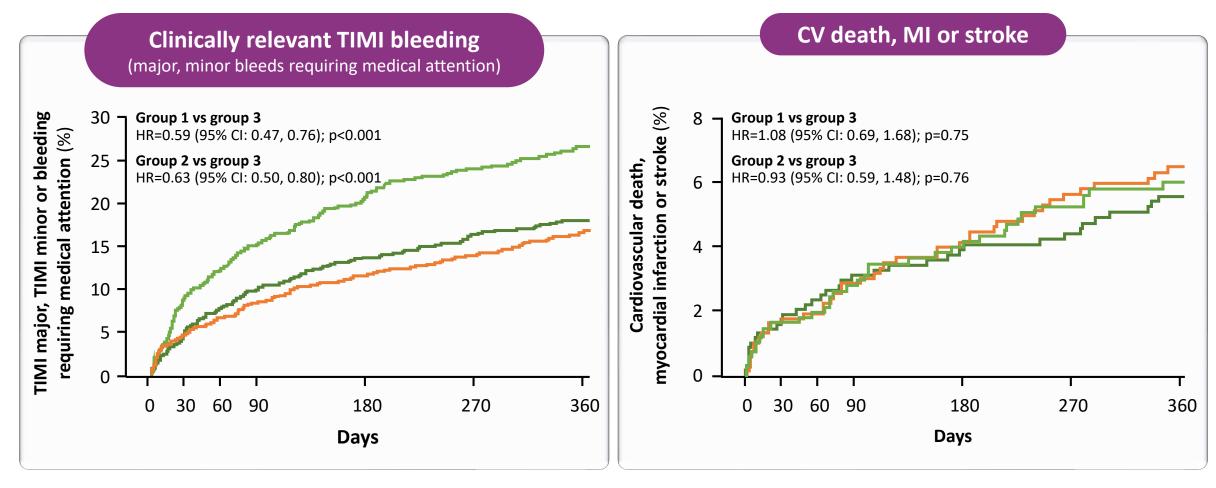
20^{emes} RENCONTRES

MÉDICO-CHIRURGICALES SAMEDI 4 DÉCEMBRE 2021

IMCVO

Hôpital prive de Parly 2 RE-DUAL PCI² demonstrated significantly less major or CRNM bleeding in each of the dabigatran strategies compared to the VKA strategy.

1.Adapted from Gibson CM et al. *N Engl J. Med.* 2016;375:2423-2434 2.Adapted from Cannon CP et al. *N Engl J. Med.* 2017;377:1513-1524


Pioneer AF-PCI : Primary safety and secondary efficacy endpoints

Primary safety endpoint

Hôpital prive de Parly 2

MEDICO-CHIRURGICALES

Secondary efficacy endpoint

- Group 1 : VKA + DAPT - Group 2 : Rivaroxaban + DAPT - Group 3 : Rivaroxaban + P2Y₁₂

Gibson CM, et al. N Engl J Med 2016;375:2423–34.

PIONEER :

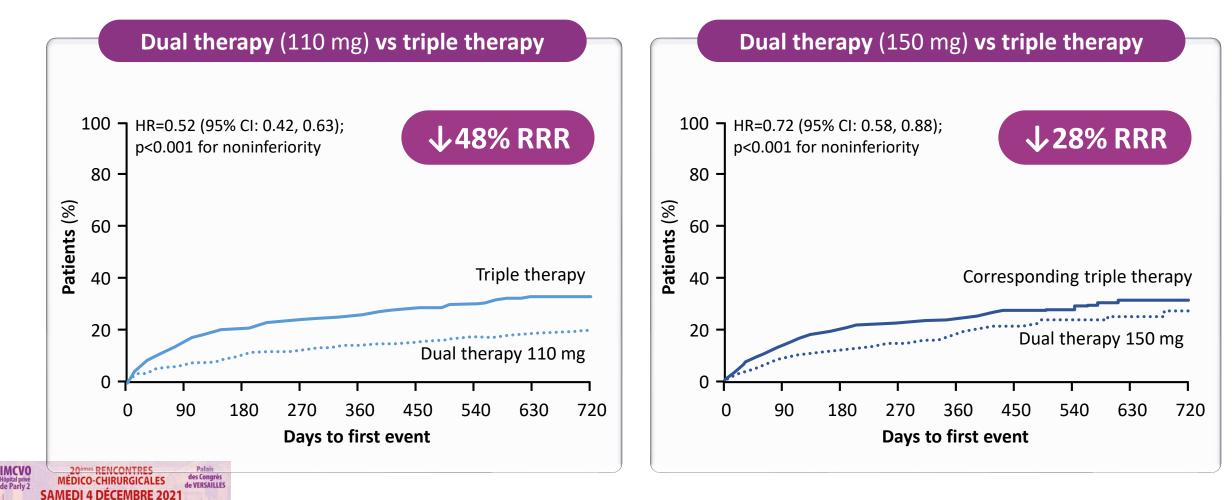
Cumulative incidence of secondary outcomes

	Riva 15 mg + P2Y₁₂ inh (grp1) N = 694	Riva 2.5 mg + DAPT (grp 2) N = 704	Warfarin + DAPT (grp3) N = 695	Group 1 vs Group 3	Group 2 vs Group 3
	N (%)	N (%)	N (%)	HR (95% CI)	HR (95% CI)
CV death	15 (2.4)	14 (2.2)	11 (1.9)	1.29 (0.59–2.8)	1.19 (0.54–2.62)
Stroke	8 (1.3)	10 (1.5)	7 (1.2)	1.07 (0.39–2.96)	1.36 (0.52–3.58)
MI	19 (3.0)	17 (2.7)	21 (3.5)	0.86 (0.46–1.59)	0.75 (0.40–1.42)
Stent thrombosis	5 (0.8)	6 (0.9)	4 (0.7)	1.20 (0.32–4.45)	1.44 (0.40–5.09)

Use of NOACs was not associated with increased cardiovascular outcomes compared with VKA

V, Cardiovascular; DAPT, dual antiplatelet therapy; MI, myocardial infarction.

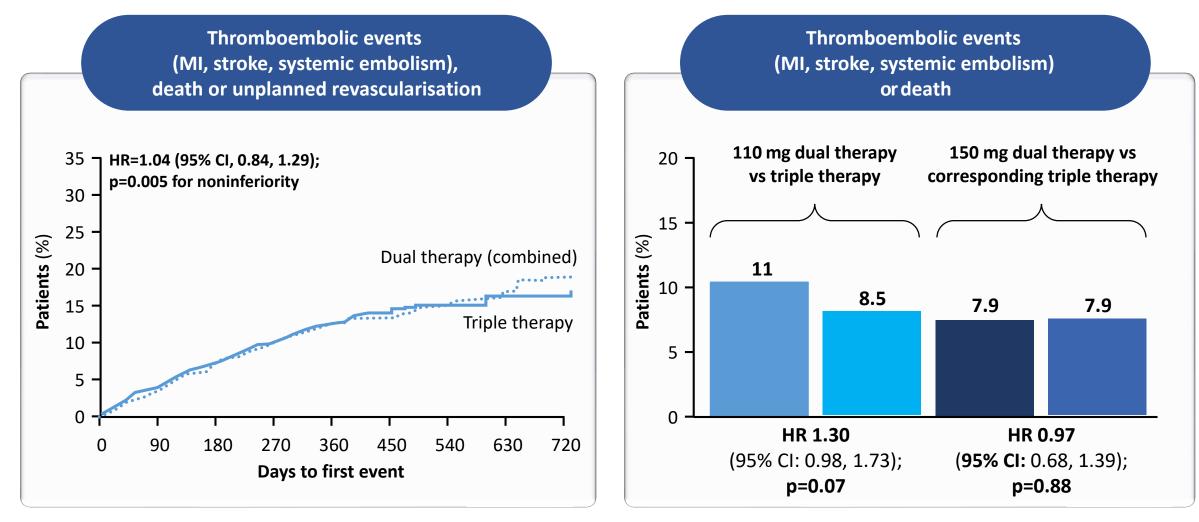
des Congrès de VERSAILLES


CEMBRE 2021

IMCVO

Gibson et al. N Engl J Med 2016;375:2423–34.

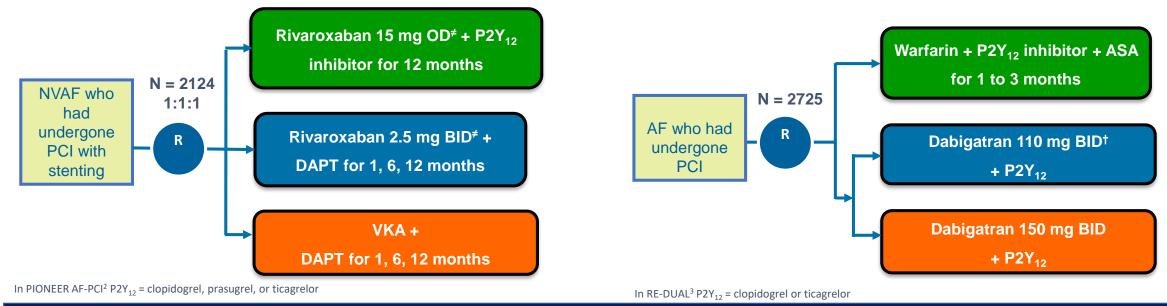
RE-DUAL PCI : Major or clinically relevant bleeding


2,725 patients with atrial fibrillation undergoing PCI

WRRR, relative risk reduction.

Cannon C, et al. N Engl J Med 2017;377:1513–24.

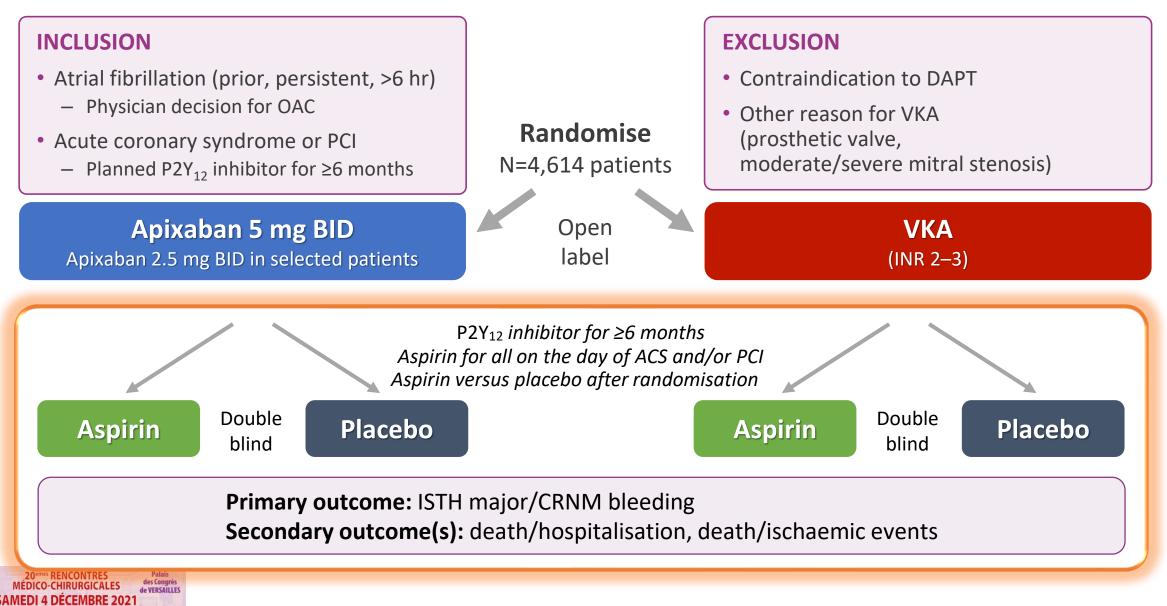
RE-DUAL PCI : Secondary efficacy endpoints


Cannon C, et al. N Engl J Med 2017;377:1513–24.

RE-DUAL : What about MACEs ? Incidence of selected secondary efficacy outcomes

		v with dabig therapy wit	atran (110 mg) vs h warfarin	Dual therapy with dabigatran (150 mg) vs triple therapy with warfarin				
	110 mg dual therapy N=981	Triple therapy N=981	HR (95% CI)	150 mg dual therapy N=763	Triple therapy N=764	HR (95% CI)		
	N (%)	N (%)		N (%)	N (%)			
Death	55 (5.6)	48 (4.9)	1.12 (0.76–1.65)	30 (3.9)	35 (4.6)	0.83 (0.51–1.34)		
Stroke	17 (1.7)	13 (1.3)	1.30 (0.63–2.67)	9 (1.2)	8 (1.0)	1.09 (0.42–2.83)		
MI	44 (4.5)	29 (3.0)	1.51 (0.94–2.41)	26 (3.4)	22 (2.9)	1.16 (0.66–2.04)		
Definite stent thrombosis	15 (1.5)	8 (0.8)	1.86 (0.79–4.40)	7 (0.9)	7 (0.9)	0.99 (0.35–2.81)		
20°mes RENCONTRES MÉDICO-CHIRURGICALES SAMEDI 4 DÉCEMBRE 2021	The abs	solute nui	mber of stent th			Ned 2017;377:1513–24.		

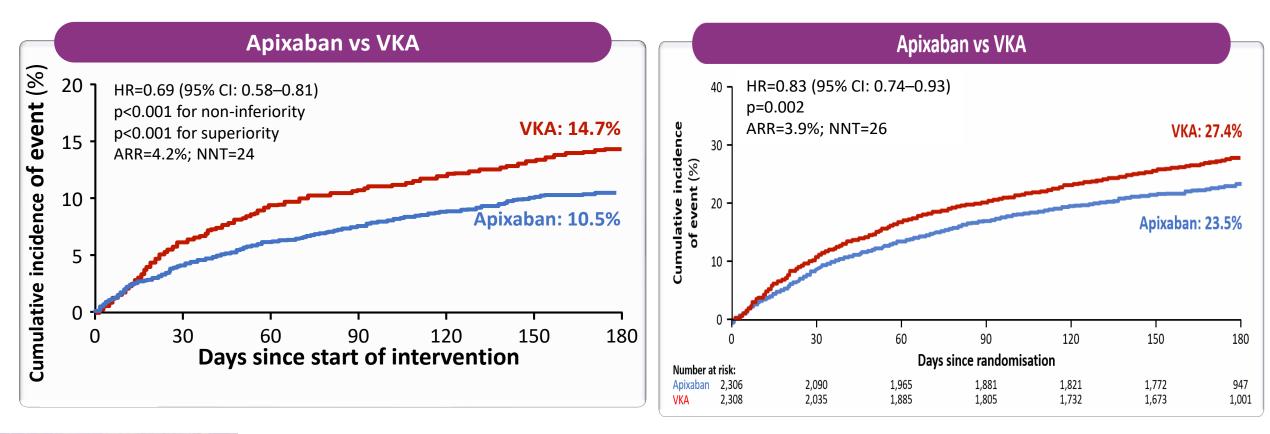
IMCVO Hôpítal privé de Parly 2 Safety and efficacy of dual vs. triple antithrombotic therapy in patients with AF following PCI **RE-DUAL PCI²**



These trials were not powered or designed to assess whether the bleeding reduction was due to the use of a NOAC or the removal of aspirin from the post-PCI oral antithrombotic strategy.¹

1.Adapted from Gibson CM et al. N Engl J. Med. 2016;375:2423-2434 2.Adapted from Cannon CP et al. N Engl J. Med. 2017;377:1513-1524

AUGUSTUS : Study design

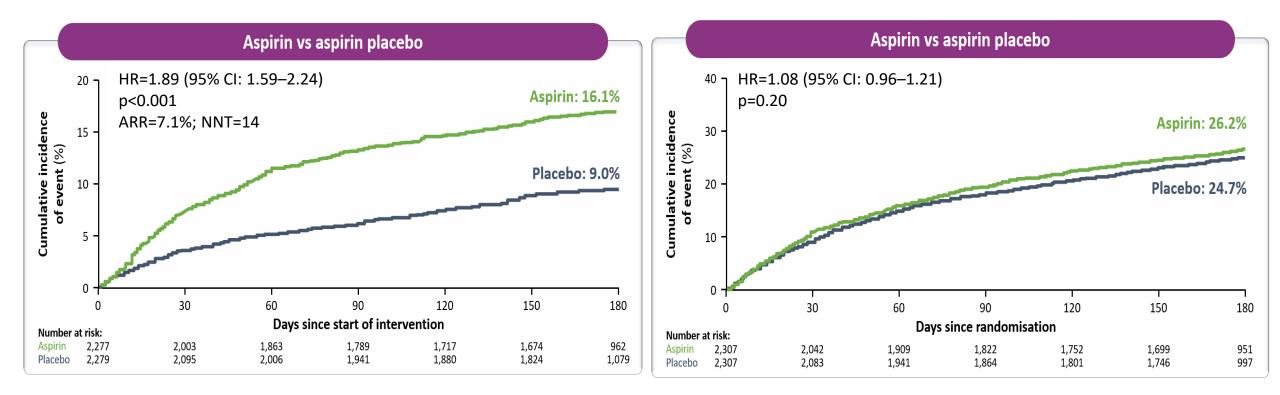

IMCVO

Lopes RD, et al. Am Heart J 2018;200:17-23.

AUGUSTUS primary Outcome : Apixaban vs VKA

ISTH major or CRNM bleeding

Death or hospitalization



 IMCVO Höpital prive de Parly2
 20°mes RENCONTRES MÉDICO-CHIRURGICALES
 Palais des Congrès des C

Lopes RD, et al. N Engl J Med 2019;doi:10.1056/NEJMoa1817083; Lopes RD. Final-AUGUSTUS-Main-Results-ACC19-PRESENTATION-17-March-2019. AUGUSTUS primary Outcome : aspirin vs placebo

ISTH major or CRNM bleeding

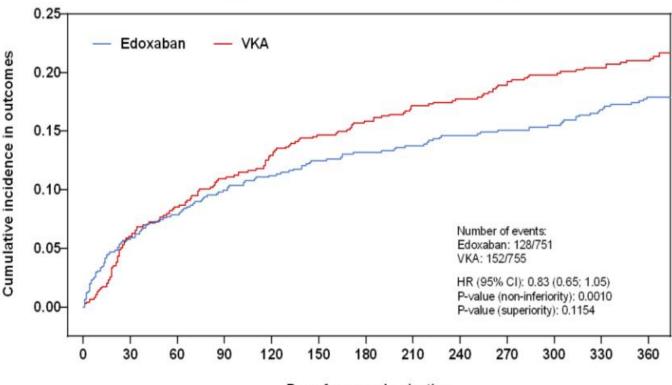
Death or hospitalization

Lopes RD, et al. N Engl J Med 2019;doi:10.1056/NEJMoa1817083; Lopes RD. Final-AUGUSTUS-Main-Results-ACC19-PRESENTATION-17-March-2019.

AUGUSTUS : Stent Thrombosis Definite/Probable Stent Thrombosis

The number needed to treat (NNT) to avoid 1 stent thrombosis event for aspirin versus placebo at 6 months is 222 and the number need to harm (NNH) to cause 1 major bleeding event is 41.

Lopez R et al. 10.1161/CIRCULATIONAHA.119.044584.


Safety and efficacy of dual vs. triple antithrombotic therapy in patients with AF following PCI : **ENTRUST-AFPCI**

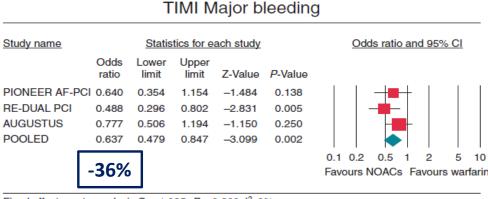
Primary Study Endpoint

ITT Analysis (N=1506), overall study period

Days from randomization

Vranckx P et al. Lancet 2019.12;394:1335-1343.

Meta-analysis of pooled data from CRT : Bleeding : NOAC better than VKA

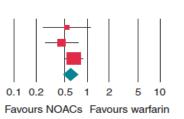

NOAC-based regimens associated with significantly less bleeding than VKA-based regimens

(B) NOACs versus VKA

ISTH Major bleeding

Study name		Statist	tics for ea	<u>ach study</u>		Odd	s rat
	Odds ratio	Lower limit	Upper limit	Z-Value	P-Value		
PIONEER AF-PC	0.521	0.348	0.780	-3.170	0.002		-
RE-DUAL PCI	0.551	0.408	0.746	-3.867	0.000		-
AUGUSTUS	0.644	0.472	0.878	-2.784	0.005		┦
POOLED	0.577	0.477	0.698	-5.652	0.000		
Г						0.1 0.2	0.5
	-42%					Favours N	OAC

atio and 95% Cl 5 2 5 10 Cs Favours warfarin



Fixed effects meta-analysis Q = 1.935, P = 0.380; I²: 0%

TIMI Minor bleeding

Study name		Statis	tics for ea	ach study	
	Odds ratio	Lower limit	Upper limit	Z-Value	<i>P</i> -Value
PIONEER AF-PC	0.531	0.248	1.135	-1.633	0.102
RE-DUAL PCI	0.449	0.266	0.758	-2.999	0.003
AUGUSTUS	0.657	0.491	0.878	-2.841	0.004
POOLED	0.593	0.466	0.755	-4.253	0.000
[-31%				

Odds ratio and 95% CI

CRNM Bleeding

	Study name		Statist	ics for ea	<u>ch study</u>	
		Odds ratio	Lower limit	Upper limit	Z-Value	P-Value
	PIONEER AF-PCI	0.671	0.525	0.858	-3.188	0.001
	RE-DUAL PCI	0.645	0.519	0.802	-3.945	0.000
	AUGUSTUS	0.698	0.571	0.854	-3.493	0.000
	POOLED	0.673	0.593	0.763	-6.136	0.000
20 ^{èmes} RE MÉDICO-CH	Γ.	-33%				

IMCVO

Maladies Cardio-Vasculaires de l'Oue

SAMEDI 4 DECENIDAE 2021

Fixed effects meta-analysis Q = 0.814, P = 0.666; I²: 0%

1 Favours NOACs Favours warfarin

2

5 10

0.5

0.1 0.2

Odds ratio and 95% CI

Potpara TS et al. Europace. 2020 Jan 1;22(1):33-46.

Meta-analysis of pooled data from RCT : Bleeding : DAT better than TAT

DAT-based regimens were associated with significantly less bleeding than TAT-based regimens

5 10

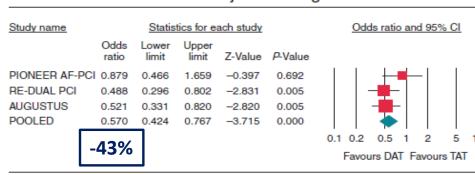
10

(A) DAT versus TAT ISTH Major bleeding Study name Statistics for each study Odds ratio and 95% Cl Odds Lower Upper P-Value ratio limit limit Z-Value PIONEER AF-PCI 0.735 0.468 1.155 -1.3360.182 **RE-DUAL PCI** -3.8670.000 0.551 0.408 0.746 AUGUSTUS 0.590 -3.3050.001 0.431 0.807 POOLED 0.598 0.491 0.727 -5.154 0.000 0.1 0.2 0.5 1 2 -40% Favours DAT Favours TAT

Fixed effects meta-analysis Q = 1.093, P = 0.579; I²: 0%

IMCVO

20^{emes} RENC MÉDICO-CHIRU


gresguer

SAMEDI 4 DECI

Maladies Cardio-Vasculaires de l'Oues

ISTH CRNM bleeding

Study name		Statis	tics for ea	ach study		Ode	ds ratio and	95%	CI
	Odds ratio	Lower limit	Upper limit	Z-Value	P-Value				
PIONEER AF-P	CI 0.769	0.591	1001	-1.953	0.051		-		
RE-DUAL PCI	0.645	0.519	0.802	-3.945	0.000				
AUGUSTUS	0.506	0.410	0.623	-6.398	0.000				
POOLED	0.613	0.537	0.698	-7.346	0.000				
	-39%					0.1 0.2	0.5 1	2	5
L	3370					Favor	urs DAT Fa	vours	TAT

TIMI Major bleeding

Fixed effects meta-analysis Q = 2.326, P = 0.313; I²: 14%

TIMI Minor bleeding

Study name		Statis	tics for ea	ach study		Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	Z-Value	P-Value	
PIONEER AF-PC	0.703	0.296	1.669	-0.799	0.424	-++++-
RE-DUAL PCI	0.449	0.266	0.758	-2.999	0.003	
AUGUSTUS	0.549	0.408	0.739	-3.960	0.000	
POOLED	0.535	0.418	0.686	-4.947	0.000	
	-47%]				0.1 0.2 0.5 1 2 5 Favours DAT Favours TAT

Fixed effects meta-analysis Q = 0.842, P = 0.656; I²: 0%

Potpara TS et al. Europace. 2020 Jan 1;22(1):33-46.

10

Meta-analysis of pooled data from RCT : Myocardial infarction & stent thrombosis

Higher rates of ST with DAT vs TAT

(A) DAT versus TAT

Myocardial infarction

Study name		Statisti	cs for ea	ch study		Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	Z-Value	P-Value	
PIONEER AF-PCI	1.008	0.577	1.762	0.028	0.977	_+
RE-DUAL PCI	1.291	0.828	2.013	1.129	0.259	
AUGUSTUS	1.244	0.899	1.722	1.317	0.188	
POOLED	1.211	0.955	1.535	1.578	0.115	
						0100 05 1 0 5

2 5 10 0.1 0.2 0.5 1

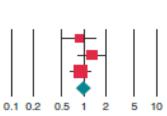
Favours DAT Favours TAT

Fixed effects meta-analysis Q = 0.521, P = 0.771; I²: 0%

Stent thrombosis

Study name		Statist	ics for ea	ach study		0)dds rat	io ar	id 95%	6 CI
	Odds ratio	Lower limit	Upper limit	Z-Value	<i>P</i> -Value					
PIONEER AF-PCI	1.370	0.435	4.318	0.538	0.591		+	-+•		-1
RE-DUAL PCI	1.554	0.689	3.503	1.063	0.288			+		-
AUGUSTUS	1.923	0.925	4.001	1.750	0.080			+		-
POOLED	1.672	1.022	2.733	2.048	0.041					
-						0.1 0.	2 0.5	1	2	5

Favours DAT Favours TAT


5 10

Similar rates of MI & ST with NOAC vs VKA

Myocardial infarction

(B) NOAC versus VKA

Statistics for each study Study name Odds Upper Lower Z-Value P-Value limit PIONEER AF-PCI 0.848 0.555 0.491 1.465 -0.590RE-DUAL PCI 1.2910.828 2.013 1.129 0.259AUGUSTUS 0.513 0.649 1.241-0.654 0.898 POOLED 0.9841.246 -0.1320.895 0.777

Favours NOACs Favours warfarin

Fixed effects meta-analysis Q = 2.033, P = 0.362; I²: 2%

Stent thrombosis

Study name		Statisti	ics for ea	ch study		Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	Z-Value	P-Value	
PIONEER AF-PCI	1.370	0.435	4.318	0.538	0.591	┃ ┃ ┼┼╋┼──│
RE-DUAL PCI	1.554	0.689	3.503	1.063	0.288	
AUGUSTUS	0.776	0.385	1.564	-0.710	0.478	
POOLED	1.095	0.676	1.773	0.368	0.713	
						0102 05 1 2 5

Favours NOACs Favours warfarin

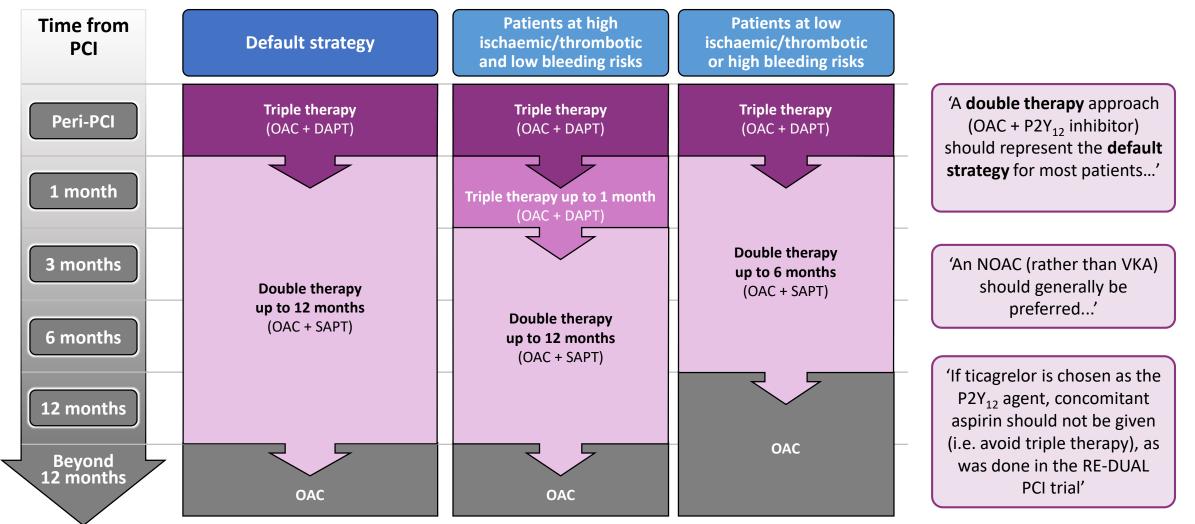
Fixed effects meta-analysis Q = 1.787, P = 0.409; I²: 0%

Odds ratio and 95% Cl

Potpara TS et al. Europace. 2020 Jan 1;22(1):33-46.

Fixed effects meta-analysis Q = 0.287, P = 0.866; I²: 0%

gresquerin

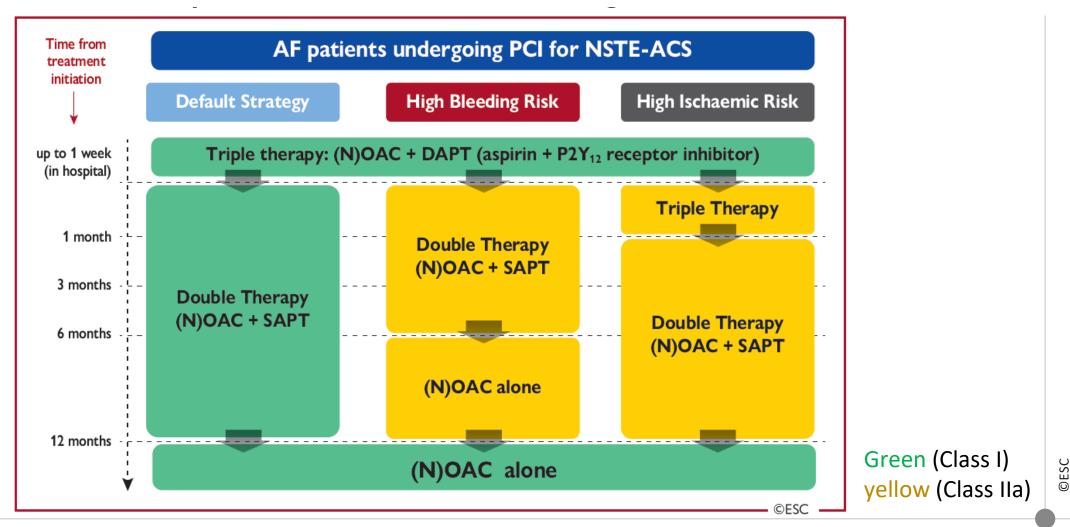

IMCVO

20^{emes} REN **MÉDICO-CHIR**

aladies Cardio-Vasculaires de l'Ouest

SAMEDI 4 DEC

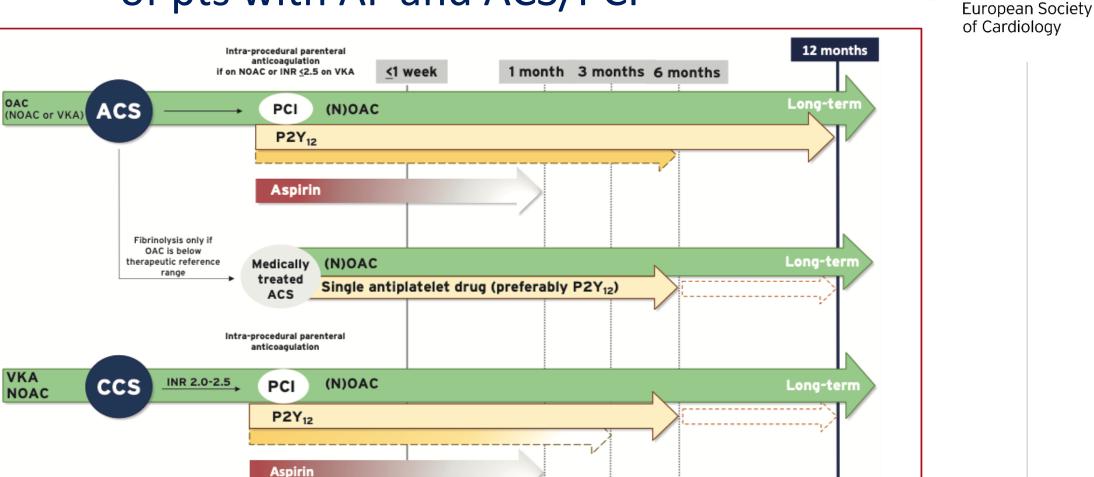
2018 North American expert consensus document


SAPT single antiplatelet therapy.

SAPT single antiplatelet the apy. Palais OAC prefer a POAC over VKAFF no contraindications; SAPT: prefer a P2Y₁₂ inhibitor over aspirin.

Clopidogref is the 221, Milbitor of choice; ticagrelor may be considered in patients at high ischaemic/thrombotic and low bleeding risks; avoid prasugrel. Consider SAPT in addition to OAC after >12 months only in select patients at high ischaemic/thrombotic and low bleeding risks.

Angiolillo, et al. Circulation 2018;138:527–36.


2020 ESC Guidelines : antithrombotic therapy in NSTE-ACS pts with AF undergoing PCI or medical management

2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation (European Heart Journal 2020 - doi/10.1093/eurheartj/ehaa575)

www.escardio.org/guidelines

2020 ESC Guidelines : post-procedural management of pts with AF and ACS/PCI

©ESC

ESC

www.escardio.org/guidelines

VKA

NOAC

OAC

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation (European Heart Journal 2020-doi/10.1093/eurheartj/ehaa612)

©ESC

2020 ESC Guidelines : post-procedural management of pts with AF and ACS/PCI

EUROPEAN Society of Cardiology

THROMBOTIC RISK FACTORS

- Diabetes mellitus requiring therapy
- Prior ACS/recurrent myocardial infarction
- Multivessel CAD
- Concomitant PAD
- Premature CAD (occurring at age of <45 y) or accelerated CAD (new lesion within 2 years)
- CKD (eGFR <60 mL/min)
- Clinical presentation (ACS)
- Multivessel stenting
- Complex revascularisation (left main stenting, bifurcation lesion stenting, chronic total occlusion intervention, last patent vessel stenting)
- Prior stent thrombosis on antiplatelet treatment
- Procedural factors (stent expansion, residual dissection, stent length, etc.)

BLEEDING RISK FACTORS

- Hypertension
- Abnormal renal or liver function
- Stroke or ICH history
- Bleeding history or bleeding diathesis (e.g., anaemia with haemoglobin <110 g/L)
- Labile INR (if on VKA)
- Elderly (>65 years)
- Drugs (concomitant OAC and antiplatelet therapy, NSAIDs), excessive alcohol consumption

STRATEGIES TO REDUCE BLEEDING ASSOCIATED WITH PCI

- Radial artery access
- PPIs in patients taking DAPT who are at increased risk of bleeding (e.g., the elderly, dyspepsia, gastro-oesophageal reflux disease, Helicobacter pylori infection, chronic alcohol use)
- Non-administration of unfractionated heparin in patients on VKA with INR >2.5
- Pre-treatment with aspirin only, add a $\mathsf{P2Y}_{12}$ inhibitor when coronary anatomy is known or if STEMI
- GP IIb/IIIa inhibitors only for bailout or periprocedural complications
- Shorter duration of combined antithrombotic therapy

©ESC

www.escardio.org/guidelines

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation (European Heart Journal 2020-doi/10.1093/eurheartj/ehaa612)

Recommendations for patients with AF and an ACS, PCI, or CCS (1)

Recommendations	Class	Level
General recommendations for patients with AF and an indication for concomitant antiplatelet therapy		
In AF patients eligible for NOACs <u>, it is recommended to use a NOAC^a in</u> preference to a VKA in combination with antiplatelet therapy.	- I	Α
In patients at high bleeding risk (HAS-BLED ≥3), rivaroxaban 15 mg o.d. should be considered in preference to rivaroxaban 20 mg o.d. for the duration of concomitant single or DAPT, to mitigate bleeding risk.	lla	В
In patients at high bleeding risk (HAS-BLED ≥3), dabigatran 110 mg b.i.d. should be considered in preference to dabigatran 150 mg b.i.d. for the duration of concomitant single or DAPT, to mitigate bleeding risk.	lla	В
In AF patients with an indication for a VKA in combination with antiplatelet therapy, the VKA dosing should be carefully regulated with a target INR of 2.0–2.5 and TTR >70%.	lla	В

2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

Recommendations	Class	Level
Antithrombotic therapy in post-PCI patients with AF or another indication for an OAC		
Dual therapy with an OAC and either ticagrelor or prasugrel may be considered as an alternative to triple therapy with an OAC, aspirin, and clopidogrel in patients with a moderate or high risk of stent thrombosis, ^a irrespective of the type of stent used.	llb	C
The use of ticagrelor or prasugrel is not recommended as part of triple antithrombotic therapy with aspirin and an OAC.	- m	С

^a Risk of stent thrombosis encompasses (i) the risk of thrombosis occurring and (ii) the risk of death should stent thrombosis occur, both of which relate to anatomical, procedural, and clinical characteristics. Risk factors for CCS patients include stenting of left main stem, proximal LAD, or last remaining patent artery; suboptimal stent deployment; stent length >60 mm; diabetes mellitus; CKD; bifurcation with two stents implanted; treatment of chronic total occlusion; and previous stent thrombosis on adequate antithrombotic therapy.

ESC Guidelines on the diagnosis and management of chronic coronary syndromes (European Heart Journal 2019; 10.1093/eurheartj/ehz425)

Conclusion : AF and acute coronary syndrome

- Which anticoagulant treatment: In most patients, NOACs should be preferred over VKA unless contraindicated
- Which P2Y₁₂ inhibitor : Clopidogrel is the first-line choice;
- When and for Whom:
 - **Dual**-therapy (OAC plus P2Y12 inhibitor) immediately or early after hospital discharge should be considered for most patients.
 - **Triple**-therapy (extended use of aspirin beyond hospital discharge) should be considered only for patients at high ischemic/thrombotic* and low bleeding risks. Duration should be limited (e.g. 1 month)

*High atherothrombotic risk as assessed by SYNTAX score (PCI), Grace score > 140 (ACS), stenting of left main or proximal LAD; proximal bifurcation, recurrent ACS, stent thrombosis.... *Bleeding risk as assessed by HAS-BLED score, BARC Consensus

